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We have computed the exact partition function of the 3D Ising spin glass on 
lattices of effective size 3 • 3 x Lz, 4 • 4 • Lz, and 5 x 5 • L z for L~ up to 9, and 
several random bond configurations. Studying the distribution of zeros of the 
associated partition functions, we find further evidence that these systems have 
a singularity in the thermodynamic limit. 
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Spin glasses are systems of magnetic impurities embedded in a 
background  medium (see ref. 1 for a current review). The impurities move 
about  slowly in the medium, and as they drift, the magnetic interaction 
between them randomly  changes sign. The time over which the sign of  the 
interaction changes is much longer than the time for a flip of the spin due 
to thermal effects. Further,  the interaction strength falls off rapidly with 
distance. Hence, the simplest model  for these systems is an Ising spin model  
with local interactions and random,  quenched bond  strengths Jo = _+1. 

The free energy of such a system is given by 

r(/~) = E log[Z(S,  f i ) ] / / 2  (1) 
J / J  

where 

Z(J, fl)=~ expI-fl ~ (1-aiJ,,~ai+~)] 
i, # 

(2) 
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where ai is an Ising spin at site i, # denotes direction, and J denotes a sum 
over random bond configurations. 

The sum over spin configurations in Eq. (2) can be transformed into 
one over the total energy by changing variables to 

E =  1 ~ (1-cr iJ i , ,cr i+, )  (3) 

The Jacobian of this change of variables is a function P(E), which is the 
number of states of the system with energy E. Thus, 

NI 

Z(J, ,8) = Z(J, u) = ~ P(E) u E (4) 
e=o 

where Nt is the number of bonds and u = e 2~. We will compute the coef- 
ficients P(E) exactly. Among other things, we are then able to study the 
analytic properties of F by looking at the zeros of (4). The method we use 
is one originally suggested by Binder (2~ and improved by Bhanot (3~ and 
Creutz. (4~ It uses a transfer matrix technique to build up the partition 
function layer by layer by stacking transverse 2D slices of Lxy spins along 
a third longitudinal direction. The utility of the method is that it allows the 
calculation to be done on lattices which would be impractical to study by 
a direct enumeration of spin states. 

In the method of ref. 3 the computer memory required is proportional 
to 2LxyE . . . .  where Emax is the energy of the most energetic spin configura- 
tion. In order to minimize Lxy, we use a method invented by Creutz, (4) 
which allows a system with a few spins to mimic a much larger 2D system, 
in a sense that will become clear later. The method of Creutz is based on 
using a special type of helical boundary condition. Let us consider an 
example. As shown in Fig. l, consider 13 spins along a one-dimensional 

J o 
3. 

3 

13- 

I I ~ O  5 

Fig. 1. The 13-spin helix with its x, y bonds. 
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chain. Let us label the spins from 0 to 12. Nearest neighbors in the x direc- 
tion have a label differing by unity (modulo 13). The trick of Creutz is to 
define nearest neighbors in the y direction to have an index differing by 5. 
Thus, the neighbors of spins 0, 1, 2 .... in the y direction are the spins 
5, 6, 7,.... Note that by doing this we have ensured that the shortest closed 
path is of length 5. This means that when computing the low-temperature 
expansion, finite-size effects appear at the same order on our 13-site lattice 
as on 5 x 5 lattice with periodic boundary conditions. It is in this sense that 
we say that the 13-site system 'mimics' a 5 x 5 periodic lattice. In general, 
let n be the smallest path on the Lxy lattice that is closed due to finite 
lattice size. Then, the Lxy lattice 'mimics' an n x n periodic lattice in the 
sense that they have the same low-temperature behavior upto finite-size 
corrections. 

Following Creutz, we call the lattice in Fig. 1 a 13/5 lattice. Similarly, 
one can show that 8/3, 18/5, 25/7, 32/7, and 42/16 lattices are equivalent 
to 4 x 4, 6 x 6, 7 x 7, 8 x 8, and 9 x 9 periodic lattices, respectively. In this 
paper, we consider 3 D Ising-like spin glasses where the x, y transverse slice 
consists of one of the 5/3, 8/3, or 13/5 helixes, stacked up respectively 7, 8, 
and 9 times along the z direction. 

Following refs. 3 and 4, we build up the partition function by first 
enumerating all the states of the bottom transverse slice and then adding 
spins one by one, layer by layer. We put cold layers (ai = 1) at the ends in 
the z direction and compute P(E) by explicitly keeping track of how many 
states have a given energy as the partition function is built up. In the case 
of the Ising model (all the bonds are + 1), the cold boundary conditions 
force all the spin configurations to have even energies, i.e., (4) is an even 
polynomial. Such is not the case for an arbitrary bond configuration, but, 
as we will shortly see, another closely related and intriguing effect takes 
place. 

One can easily parallelize the construction of the partition function by 
vectorizing over the 2 Lxy states of Lxy transverse spins. We used an 8K 
Connection Machine CM-2 with 1 Gbyte of memory for our calculations. 
Our program took about 10 min per bond configuration to find P(E) for 
z up to 9 in the case of Lxy= 13. We generated Z for 200, 100, and 30 
random bond configurations for Lxy = 5, 8, 13. 

As defined in Eq. (4), the partition function is a finite polynomial in u 
and is therefore completely determined by its zeros. Note also that the free 
energy in Eq. (1) can be written as the log of the product of partition 
functions over bond configurations. Thus, 

F ~  log []~I J Z(J,u)] (5) 
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Hence, the analytic structure of F may be displayed by plotting the zeros 
of Z for all bond configurations together in the complex u plane. 

In Fig. 2 we show our results for the zeros of our various systems for 
the largest number of layers in the z direction. The zeros were computed 
using very high-precision arithmetic in Mathematica and were checked by 
ensuring that they solve Z(J, u~)= 0. For each configuration all the zeros 
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Fig .  2. Allthezerosfor(a)(L.~y=fi, L==7),(b)(L~z=8, Lz=8),and(c)(L~y=13, L =9 ). 
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Fig. 2. (Continued) 
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were computed and this allowed us to observe some curious properties of 
these, zeros. 

We found that for each random configuration there are always N j  
zeros at u = - 1  with N 7 equal to the total number of z directed bonds 
that are set to - 1 .  Apart  from these, the remaining zeros are symmetric 
with respect to reflection both in the real and the imaginary u axes. Reflec- 
tion symmetry in the real axis is trivial because the P(E) 's  are real. 
However, reflection symmetry in the imaginary axis is nontrivial. This 
property implies that the partition function Z(J, u) factors into a term 
(1 + u) N; times a polynomial with only even powers of u. This fact was 
checked for all the bond configurations by explicit algebraic factorization 
(using Mathematica)  of the partition functions. This curious property is 
quite evident in Fig. 2, where we plot all zeros except the ones at u = - 1  
for all bond configurations. We do not have any clear explanation for this 
factorization. We note that there is nothing special about the negative 
bonds themselves: The fact that there are N z  zeros at u = - 1  is related to 
the fact that we chose the boundary condition ai = 1 on both ends. Indeed, 
if we set a ; =  1 on the bot tom layer and ai = - 1  on the top, Z(J,  u) has a 
factor 

(1 ~- U) N; 

where N + is the number of + 1 bonds in the z direction. What is intriguing 
is the fact that there is precisely one factor (1 + u) per vertical bond (of the 
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sign determined by the given choice of boundaries). The meaning of the 
remaining even polynomial is obscure. 

As Fig. 2 indicates, the zeros for Re(u) form a shelf with a finite Im(u). 
A nonanalyticity of the free energy would result if the shelf of zeros 
descended to the real-u positive half-axis in the thermodynamic limit. In 
our numerical experiment, we have two parameters controlling the size of 
the system. For  a finite, fixed transverse size Lxy, we can increase the 
longitudinal size Lz. One would then expect the shelf to move closer to the 
real u axis but eventually to level off, as there cannot be a singularity in 
one-dimension. This is indeed what is observed, as is shown in Fig. 3. This 
figure has been obtained computing the Ira(u) of the zero closest to the real 
axis for each bond configuration, then averaging over the configurations 
and plotting against Lz. 

Let us define the characteristic linear dimension L = (LxyLz) 1/3 for a 
lattice of size Lxy x Lz. For  L~y and L~ both large, as one approaches the 
thermodynamic limit, the distance from the closest zero to the positive u 
axis should scale as A + BL -~/v, where v is the correlation length and A 
and B are u-dependent functions (5) with A purely real. The averages (over 
bond configurations) of Ira(u) for the zero closest to the positive u axis 
plotted against L -1 are shown in Fig. 4. The results strongly suggest a 
phase transition in the thermodynamic limit because the average of Ira(u) 
seems to vanish in this limit. To determine v, we make a fit of the data in 
Fig. 4 to aL -I/v keeping only those points which have the underlying L z 
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Fig. 3. The average (over configurations) of the imaginary part of the closest zero as a 
function of L=. 
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Fig. 4. The average of the imaginary part of the closest zero as a function of L -  L The solid 
line is a fit to aL -l/~. 

less than n + 1, where n is the length of the shortest closed path in the xy  

plane (as determined by Lxz). This is to avoid making the lattice look one 
dimensional (see Fig. 3). The solid line in Fig. 4 shows the fit. The fitted 
value is v=  1.10(4), to be compared with v=  1.4 obtained from Monte 
Carlo simulations. (6) The discrepancy is probably a systematic error due to 
the relatively small L values we used. An estimate of the critical tem- 
perature can be obtained by plotting the average of the real part of the 
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Fig. 5. Fit of the average real part of the closest zero to e + dL-UV. 
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closest zero against L -  ~/~ and making a linear fit. This is shown in Fig. 5 
with the resulting intercept ue = 0.28(2), implying Tc = 1.57(9). 

From our partition functions, one can also study the properties of the 
ground state, in particular the ground-state energy and the ground-state 
degeneracy. Figure 6 shows the average energy E0 of the ground state as a 
function of the volume V= L x y L  z. A fit to E o = a + b V  has an excellent Z 2 
and the slope gives E o / V =  0.742(2). 

In Fig. 7 we show the average degeneracy d of the ground state as a 
function of the volume. We made fits to d =  A V  p and d =  Be cv. Both fits 
have a good )~2 and are shown in Fig. 7. The fitted parameter values are 
(A = 0.07(1), p = 1.51(5)) and (B = 2.3(1), c = 0.047(1)). The issue of which 
form is correct is important (e.g., for spin-glass models of neural networks) 
and can be resolved by studying larger systems. 

As mentioned earlier, the memory required to compute Z scales like 
2 Lxy, which saturates most computers for rather small Lxy. However, we 
have found a way to construct even larger effective lattices by pushing the 
helix method one step further. Consider a set of points along a helix and 
define nearest neighbors along the x, y, z directions to be hx, hy, h~ steps 
away from each point. It is easy to show that one can make the shortest 
closed path rather with modest values for hx, hy, h~. Indeed, h x = 7 ,  
h y = l l ,  hz=12  mimics a 7 x 7 x 7  periodic system. Since the storage 
required to study this system by our method goes like 2 h-', one can be 
optimistic that one can study rather large systems in this way. An interest- 
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ing application of these helical lattices is to construct large orders of 
low-temperature expansions for the three-dimensional Ising model. Using 
this method, in collaboration with M. Creutz, we have computed the low- 
temperature series for the average energy per bond of the 3D Ising model 
to 50 excited bonds. (7) 
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